Characterizations of derivations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of 2-local derivations and local Lie derivations on some algebras

We prove that every 2-local derivation from the algebra Mn(A)(n > 2) into its bimodule Mn(M) is a derivation, where A is a unital Banach algebra and M is a unital A-bimodule such that each Jordan derivation from A into M is an inner derivation, and that every 2-local derivation on a C*-algebra with a faithful traceable representation is a derivation. We also characterize local and 2-local Lie d...

متن کامل

Characterizations of centralizers and derivations on some algebras

A linear mapping φ on an algebra A is called a centralizable mapping at G ∈ A if φ(AB) = φ(A)B = Aφ(B) for each A and B in A with AB = G, and φ is called a derivable mapping at G ∈ A if φ(AB) = φ(A)B + Aφ(B) for each A and B in A with AB = G. A point G in A is called a full-centralizable point (resp. full-derivable point) if every centralizable (resp. derivable) mapping at G is a centralizer (r...

متن کامل

Characterizations of Jordan derivations on triangular rings: Additive maps Jordan derivable at idempotents

Let T be a triangular ring. An additive map δ from T into itself is said to be Jordan derivable at an element Z ∈ T if δ(A)B +Aδ(B) + δ(B)A+Bδ(A) = δ(AB+BA) for any A,B ∈ T with AB + BA = Z. An element Z ∈ T is called a Jordan all-derivable point of T if every additive map Jordan derivable at Z is a Jordan derivation. In this paper, we show that some idempotents in T are Jordan all-derivable po...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Characterizations of amenable hypergroups

Let $K$ be a locally compact hypergroup with left Haar measure and let $L^1(K)$ be the complex Lebesgue space associated with it. Let $L^infty(K)$ be the dual of $L^1(K)$. The purpose of this paper is to present some necessary and sufficient conditions for $L^infty(K)^*$ to have a topologically left invariant mean. Some characterizations of amenable hypergroups are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dissertationes Mathematicae

سال: 2019

ISSN: 0012-3862,1730-6310

DOI: 10.4064/dm775-9-2018